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Abstract—For the RoboCup Soccer AdultSize League the
humanoid robot Sweaty uses a single fully convolutional neural
network to detect and localize the ball, opponents and other
features on the field of play. This neural network can be trained
from scratch in a few hours and is able to perform in real-time
within the constraints of computational resources available on the
robot. The time it takes to precess an image is approximately
11ms. Balls and goal posts are recalled in 99% of all cases
(94.5% for all objects) accompanied by a false detection rate
of 1.2% (5.2% for all). The object detection and localization
helped Sweaty to become finalist for the RoboCup 2017 in
Nagoya.

I. INTRODUCTION

The detection of the ball and other objects on the field of
play of RoboCup Soccer competitions have become more and
more challenging since the introduction of multi-colored balls,
white goal posts and of artificial turf. Therefore, achieving
reliable results with traditional algorithms based on color seg-
mentation and edge detection within captured images becomes
increasingly difficult. Differing and unexpected patterns on
the – moving – soccer ball, changing lighting conditions and
varying contrast of worn-out lines require constant parameter
tuning.

A. Fully Convolutional Neural Networks

In recent years, neural networks, especially convolutional
neural networks have revolutionized the field of computer
vision. There are already a number of teams in the RoboCup
Humanoid Soccer leagues that use neural networks to improve
the accuracy of their detection, however most still rely on
algorithms based on color segmentation, histograms and de-
tecting shapes to extract a region of interest (ROI) beforehand.
The neural network is then applied to these ROIs. For this
work, a deep fully convolutional neural network architecture
is used for the identification and localization of objects on
the field of play analyzing the whole camera image. With this
information the location and attitude of the robot on the field
can be deduced.

It is possible to completely replace traditional computer
vision approaches with a fully convolutional neural network.
This is achieved in a manageable time and for training, even
when starting from scratch without a pre-trained network.
Since the FCNN maps an input image pixel by pixel to a
probability map for a particular object class (”heat-map”) the
image size and resolution can easily be changed. It turned
out that not only the ball, but many other object types like
the goal posts, opponents and characteristic line elements
could be trained and localized. Including training images
captured in a wide range of lighting conditions made the object
recognition insensitive to variations in lighting. During a game
the deployed FCNN worked in real-time.

B. Humanoid Robot Sweaty

The humanoid robot ”Sweaty” was finalist at the RoboCup
Soccer AdultSize League in 2016 and 2017. Sweaty’s name
alludes to the innovation that particularly hard working motors
are cooled by evaporating water from an enclosing felt [1], like
humans sweating. Overall 32 motors actuate Sweaty’s joints.
Sweaty is 172 cm tall and weighs 25.6 kg (Fig. 1).

To perceive items and opponents on the field of play, Sweaty
is equipped with two cameras with a resolution of 1280×1024,
which cover a field of vision of 160◦ and operate at up to 60
frames per second (Fig. 2). To track its movements on the
field, Sweaty uses three inertial measurement units (IMU),
each providing three components of angular velocity and
three components of linear acceleration. For image processing
Sweaty carries a i7-3.5GHz-CPU running Ubuntu 16.04 and
a GeForce-GTX-760-GPU.

Once objects have been detected their distance is calcu-
lated by triangulation. Therefore the base point of obstacles,
opponents and goal posts has to be identified. The only
preprocessing step is to convert the image data to float values
and dividing by 255 to get normalized values between zero
and one.



Figure 1. RoboCup AdultSize League humanoid robot Sweaty

II. RELATED WORK

In which way neural networks have been used for the
recognition of objects on the field of play within the RoboCup
Soccer community is shortly summarized. A few references
were taken from the meanwhile vast area of the classification
and localization of objects in images and the segmentation
of images with the help of convolutional neural networks
(CNNs).

A. Neural Network Applications in RoboCup Soccer

In the context of RoboCup Soccer competitions, camera
detection of entities on the field of play (ball, goals, field
area, lines or players) were identified with the help of neural
networks by various teams. In an early stage very small
neural networks assisted with the classification from hue
histograms [2] or orientation histograms [3] for regions of
interest, which had been chosen beforehand by other image
processing methods. Unprocessed camera pixel values were
first taken from very small sample windows [4], but later

from larger regions of interest [5]. In this case up to three
convolutional neural network layers and two fully-connected
layers were used for the detection of other NAO robots. The
size of the neural networks resulted in a computational load,
which is too high for real-time deployment on the NAO robots
being investigated. The approach by [5] was extended to
humanoid robots in general [6] and compared various neural
net configurations (LeNet, SqueezeNet, and GoogleLeNet) and
published training data.

Recently [7] addressed the problem to reduce the computa-
tional load in the case of NAO robots by using an XNOR-net
respectively a SqueezeNet achieving a classification perfor-
mance for NAO robots of approximately 97% taking around
1ms for a proposal. For the case of detecting the ball [8]
benchmarked as many as 252 network designs regarding
precision, recall, and execution time. The recall is almost
insensitive to the network design and precision drops from
around 98% to 82% in some cases, but is uncorrelated to the
execution time.

In all cases discussed in the preceding paragraphs, classified
objects are only localized implicitly by the position of the
selected region of interest within the image. To localize the
soccer ball in full camera images was undertaken by Speck et
al. [9], [10] using three convolutional layers followed by two
fully connected layers for the horizontal respectively vertical
projection of the images. In the horizontal projection 81% of
the peaks were detected and 75% in the vertical direction.

B. Classification and Segmentation by CNNs

The vision system in RoboCup Soccer for humanoid robots
aims at identifying and localizing a small number of objects
and features on the field of play. Particularly in the case of a
fast moving ball it is also important to do so in real-time at

Figure 2. Sample view of Sweaty’s vision system with object detections
overlaid: ball circled in red, feet of the goal post joint by a goal line, foot
of the obstacle indicated by white square, L–line corners, T–line junctions,
white circle–penalty point, X–line crossing (not in view)



Figure 3. Image processing pipeline

rates of more than 20Hz. It is also necessary to find several
instances of the same object category like line corners (see
Fig. 2).

To start with, the use of deep convolutional neural networks
followed by one or more fully-connected layers lead to im-
pressive results classifying objects out of up to a thousand
object categories. Pure classification was extended to the
detection of multiple occurrences of the same object category
and localization by bounding boxes. The various approaches
(Faster R-CNN, R-FCN, and SSD) with different feature
extractors (VGG, Resnet, Inception, and MobilNet) have been
benchmarked in [11].

Driven by the needs of image processing for assisted and
autonomous driving as well as medical applications semantic
segmentation tries to allocate every pixel of the image to an
object category. For deep convolutional neural networks the
fully-connected layers for classification are dropped and the
resolution lost by pooling (down-sampling) is recovered by
up-sampling (deconvolution). Details of the image are retained
by skip-connections between layers of the same resolution and
the resolution of the output is the same as for the input image
allowing feedforward end-to-end training by back-propagation.
For this work reference [12] served as a starting point. Similar
approaches are reported as the SegNet [13], the V-Net [14],
and the U-Net [15].

III. NEURAL NETWORK FOR LOCALIZATION

Using a FCNN that can perform in real-time when applied
on full resolution images with limited resources requires
lightweight models. In contrast to image classification appli-
cations with hundreds or even thousands of different object
categories, the environment on a RoboCup Soccer field is
distinctively less complex. A neural network designed for
RoboCup is therefore able to perform well with only a fraction
of the number of parameters. Such small lightweight models
are generally less prone to over-fitting even when trained on
a relatively small dataset.

A. Network Architecture

We propose three similar architectures, with many layers but
a comparatively low number of feature maps per layer. All of
which have significantly less then one million parameters.

1) SweatyNet-1: The network has an encoder-decoder de-
sign similar to SegNet [13]. The architecture is illustrated
in Fig. 6. The encoder consists of 12 convolutional layers.
Batch normalization and ReLU activation function are applied
after each convolution. The number of filters in the first layer
is eight and is doubled after each of the four max-pooling
layers. The decoder path is shorter, with only six convolutional
layers and two upscaling layers. Bilinear upscaling is used

Figure 4. Sample training images demonstrating variations in lighting
conditions, white balance and complexity of scene

instead of transposed convolutions that are known to produce
checkerboard artifacts [16]. All convolutions are computation-
ally efficient 3× 3 kernels. The input resolution is 640× 512,
output resolution is four times lower to reduce computational
effort and costly data transfers from the GPU. The number of
output channels equals the number of classes.

Skip connections exist between layers of the same resolution
from the encoder to the decoder path to have finer grained
spatial information from higher layers available in the decoder.
In addition there are residual connections between the pooling
layers of the encoder path to speed up training and to achieve
more efficient parameter usage.

2) SweatyNet-2: Is a variation of SweatyNet-1 with fewer
layers and less parameters to reduce inference time. The dotted
layers in Fig. 6 are removed.

3) SweatyNet-3: Reduces the number of channels with 1×1
convolutions before every convolution with 3×3 filter kernels
to decrease the number of parameters and the inference time
(Fig. 7).

B. Training Data and Teaching Signal

Most of the training data was collected on our field of play
conforming to the rules of the RoboCup Humanoid Leagues.
In total the dataset consists of 2400 images, 2150 are used
for training while 250 are used for testing. Images were taken
from the robots point of view at arbitrary locations and viewing
directions in different light conditions. To be able to detect
a wide variety of robot feet, additional training data was
gathered from Youtube videos of prior RoboCup competitions.

To increase the variance in the training, the following mod-
ifications are applied to the images during training: random
horizontal flips, random crops, random rotations, random blur,
and random brightness adjustments.



Figure 5. Training data teaching signal and network output (heat-map). The
top left image shows a training image and the bottom left accordingly labeled
balls. The top right image is the training image overlaid with the heat-map,
shown on its own at the bottom right

Currently we discriminate between the following object
classes: ball, goal post, crossing lines, penalty mark, corners
of lines, T-junctions of lines, opponents, and obstacles.

All these objects are labeled at a single point. Opponents,
obstacles and goal posts are marked at the center of their
base, the other classes are labeled at their center. To train
the network, these labels are transformed to 2D-maps of
feature locations. Instead of marking a single pixel a normal
distribution with a standard deviation of σ = 4 is centered
around the label coordinates. In this way the training error is
reduced, even if the peak at the output of the network is off by
a few pixels. A pixel-accurate prediction (standard deviation
σ = 0) would be almost impossible to learn. The left column
of Fig. 5 shows a training image and the corresponding 2D-
map for marked balls. The labels are saved as text-files; during
training the required 2D-maps are created from these labels.

C. Post-Processing

Since the network does not directly predict pixel coordinates
but two-dimensional probability maps for each category, pixel
coordinates are determined with a simple peak detection
algorithm. The pixels around a local maximum are used to
determine the actual peak position with sub-pixel accuracy.

Data: matrix for single category in output
while matrix maximum value > threshold do

get coordinates of maximum;
mask pixels around maximum;
determine new matrix maximum value;

end
Algorithm 1: Peak detection algorithm

D. Training

All models are trained by minimizing the mean squared
error (MSE) between the output and the teaching signal with

Figure 6. Architecture of SweatyNet-1 and SweatyNet-2. The dotted convo-
lutional layers are removed in SweatyNet-2

the Adam-optimizer [17]. This optimizer has been shown to
perform well for deep networks. It automatically adapts its
learning rate, so there is no need to manually decrease it in
later stages of training. The models are trained end-to-end on
the full dataset with a batch-size of 4 and a learning rate of
10−3.

IV. RESULTS

Training the network for 100 epochs from scratch to con-
vergence takes two hours on a single Nvidia GTX-1080-GPU.
At that point the recall (RC) on the training set over all classes
is around 93%, while the false detection rate is around 5%.
Recall is defined as true positives (TP) divided by the sum of
TP and false negatives (FN)

RC =
TP

TP + FN
. (1)

The false detection rate (FDR) is the number of false
positives (FP) divided by the number of all detections

FDR =
FP

FP + TP
. (2)

A detection is classified as TP if a local maximum with
sufficient magnitude is detected within a radius of five pixels
around the coordinates of the label. The threshold for a valid
detection is determined per class in the testing phase. Defining
the threshold as 70% of the average magnitude of a maximum
over all training data, where at least one object of a class is



Figure 7. Architecture of SweatyNet-3

present, has shown to be a good trade-off between achieving
a high RC and relatively low FDR.

A. Influence of Dropout
Dropout is a widely used method to improve generalization

and to prevent over-fitting. A dropout layer randomly zeros a
defined percentage of feature maps in the training phase. To
examine the effects of dropout a single dropout layer is added
at the bottleneck of the network.

Fig. 8 shows the recall and the false detection rate of the
SweatyNet-1, trained with dropout probabilities of p = 0, p =
0.25 and p = 0.5. There are no signs of over-fitting without
applying dropout; training with p = 0.25 leads to comparable
RC and slightly higher FDR as with p = 0, the network trained
with a dropout probability of p = 0.5 performs significantly
worse.

B. Comparison

The three proposed architectures perform almost equally
well at detecting the ball and field entities. SweatyNet-1 per-
forms significantly better at detecting opponents. The complete
results are illustrated in Table II. Table I shows a size and
speed comparison. GPU and CPU inference time tests were
carried out on Sweaty’s hardware with an input resolution of
640× 512.

C. Performance on Sweaty

Sweaty’s vision performed very well at the RoboCup 2017
in Japan trained with only the data collected at our labora-
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Figure 8. Influence of dropout on recall and false detection rate for
SweatyNet-1

Table I
SPEED AND SIZE COMPARISON

model parameters inference GPU inference CPU

SweatyNet-1 600K 11ms 69ms

SweatyNet-2 450K 9ms 55ms

SweatyNet-3 300K 9ms 53ms

tory. Gathering additional training data and retraining on site
further improved performance. Running our image processing
pipeline in a single thread, frame rates of up to 60Hz are
possible. The network itself needs around 11ms to process a
frame, getting the frame from the camera and preprocessing
takes 3ms. The time it takes to identify maxima and calculate
pixel coordinates is dependent on how many objects are
detected in the camera image, but is usually around 3ms for
common game situations. Pre- and post-processing are done
on the CPU while the network runs on the GPU.

V. CONCLUSION

It was shown that it is possible to replace Sweaty’s old
vision tool-chain with separate line and ball detection com-
pletely by a single FCNN. The ball, the goal posts and line
elements are very reliably detected. The positional resolution
needs to be investigated more carefully in order to estimate its



Table II
RECALL AND FALSE DETECTION RATES IN PERCENT AFTER 100 EPOCHS (TOTALS ARE AVERAGES WEIGHTED BY OCCURANCES OF OBJECTS)

model
Balls Posts X Junction L Junction T Junction P Junction Obstacles Opponents Total

RC FDR RC FDR RC PR RC FDR RC FDR RC FDR RC FDR RC FDR RC FDR

SweatyNet-1 98.7 1.2 99.1 0.8 99.2 0.7 94.9 5.1 95.0 5.0 81.5 10.5 97.2 2.8 84.7 15.2 94.5 5.2
SweatyNet-1 with
dropout p = 0.5

99.2 0.8 99.1 0.8 97.2 2.8 95.7 4.3 98.6 1.4 0.0 100 98.1 2.0 82.4 17.5 90.5 9.7

SweatyNet-1 with
dropout p = 0.25

98.7 1.2 98.2 1.7 96.4 3.5 94.8 5.0 97.2 2.8 81.3 18.3 97.2 2.8 75.5 20.1 93.5 5.9

SweatyNet-2 95.3 3.6 96.5 3.4 90.9 6.5 93.6 6.3 94.5 5.4 82.5 12.3 90.0 9.1 69.5 23.2 90.7 8.4

SweatyNet-3 97.0 3.0 96.1 3.1 94.0 5.3 92.1 9.0 94.9 5.1 92.5 7.5 91.4 8.5 71.3 25.3 91.3 7.3

influence on the localization and attitude of the robot in space,
i. e. on the field of play. The detection of opponents and of
obstacles (like the referees) is not yet fully satisfactory. In this
case a definition by bounding boxes might be better than the
current approach.
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