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Abstract—This paper introduces a method for making fast
decisions in a highly dynamic situation, based on forward simula-
tion. This approach is inspired by the decision problem within the
RoboCup domain. In this environment, selecting the right action
is often a challenging task. The outcome of a particular action
may depend on a wide variety of environmental factors, such as
the robot’s position on the field or the location of obstacles. In
addition, the perception is often heterogeneous, uncertain, and
incomplete. In this context, we investigate forward simulation as
a versatile and extensible yet simple mechanism for inference of
decisions. To evaluate an action, the outcome is simulated based
on the estimated state of the situation. The simulation of a single
action is split into a number of simple deterministic simulations
– samples – based on the uncertainties of the estimated state
and of the action model. Each of the samples is then evaluated
separately, and the evaluations are combined and compared with
those of other actions to inform the overall decision. This allows
us to effectively combine heterogeneous perceptual data, calculate
a stable decision, and reason about its uncertainty. This approach
is implemented for the kick selection task in the RoboCup SPL
environment and is actively used in competitions. In simulated
experiments we validate the new scheme and evaluate different
strategies.

Index Terms—decision making, action selection, forward sim-
ulation

I. INTRODUCTION

A highly dynamic environment requires a robot to make de-
cisions quickly and with limited information. In the RoboCup
scenario, the robot that is in possession of the ball needs to take
action as quickly as possible before the opponent players get
a chance to interfere. However, the particular situation might
be very complex and many aspects, like the robot’s position
on the field, as well as the positions of the ball and obstacles,
need to be taken into account. This makes inferring a decision
a complicated task.

In this work we propose an inference method based on
forward simulation to handle this complexity and ensure short
reaction times at the same time. We focus in particular on
the RoboCup scenario where the robot has to choose the best
kick from several different possibilities, which provides the
motivation for our approach.

Outside of RoboCup, internal forward simulation has al-
ready been successfully used as an inference method in
robotics. In [1], forward models are used to predict the noise a
robot produces by intended motor actions. In [2], the authors

investigate navigation of robots in a dynamic environment.
They use a simulation approach to envision movements of
other agents and pedestrians to enable avoiding dynamic
obstacles while moving towards a goal. In [3] the authors
introduce a pancake baking robot which is planning its actions
using a full physical simulation of the outcome of possible
actions. In [4] the authors use a physics based action selection
scheme to generate and select robot actions to maximize the
motion of the articulated object and thus learn a better model
of the object. [5] introduces Imagination-Augmented Agents to
complement a RL algorithm which solves puzzle games like
sokoban. To estimate the state after an action a simulation-
based approach is used.

In the RoboCup community, there have already been several
attempts to implement similar methods. In particular [6],
[7] and [8] focus on a very similar task – the selection of
the optimal kick. In [6], a probabilistic approach is used
to describe the kick selection problem which is then solved
using Monte Carlo simulation. In [7], the kick is chosen to
maximize a proposed heuristic game situation score which
reflects the goodness of the situation. In [8], the authors use an
instance based representation for the kick actions and employ
Markov decision process as an inference method. In [9] the
authors find that projection of the intention of other players
can significantly improve the performance of path planning
algorithms.

The work presented in this document is a continuation of the
simulation based approach for selection of actions presented
in [10]. The presented simulation based inference method has
been implemented for the NAO-robot and actively used by the
team Berlin United at the RoboCup competitions for several
years. Evaluation based on labeled video and log data from
real RoboCup competitions was presented in [10]. The results
show a significant improvement in comparison to our previous
methods.

For an effective decision, data from heterogeneous sources
(e.g., visual percepts, ultrasound) needs to be combined.
Often different filtering/modeling techniques are used for state
estimation, which adds to the difficulty of the inference of
decisions. In particular, representation and propagation of
uncertainty is problematic. As we will show, the simulation
based approach can provide a straightforward way of dealing



with uncertainty.
The intuition behind a simulation-based approach is to

imagine (or simulate) what would happen as a result of the
execution of a particular action and then choose the action
with the optimal (imagined/simulated) outcome. A potential
issue with this approach is that the quality of the decision
depends on the quality of the simulation, i.e., the model of
the environment. For example in [3], [11], the robots use
complete fine-grained physical simulations for their decision-
making. In contrast, we argue that the simulation itself can
be quite coarse. To compensate for errors in the simulation, it
is executed a number of times with varying initial conditions
sampled according to the estimated state of the situation. Each
of these realizations is evaluated individually and the overall
decision for an action is then based on the distribution of the
particular evaluations of the simulation. This is repeated for all
possible actions (kicks) and the action with the best outcome
distribution is chosen for execution.

In this paper we analyze the simulation scheme, discussed
in [10], in more detail. In particular, we focus on generaliza-
tion of the structure and formalization of the algorithm, and
extension to parametric actions with parameters in continuous
spaces. We also empirically analyze the stability of decisions
depending on the number of predictions, and analyze the per-
formance of different decision schemes involving parametric
actions in comparison to purely discrete action selection, as
presented in [10], in a simulated RoboCup scenario.

Our results show that a small number of predictions are
already sufficient for a stable decision, making the algorithm
suitable for running on a robot with limited resources, such
as the NAO. The results also indicate that optimizing action
parameters can lead to better-performing strategies. The algo-
rithm involving parametric actions was able to score a goal
on an empty field in significantly less time than the version
without optimization.

The remainder of the paper is structured as follows. In
the next section we discuss the action selection problem
within the RoboCup domain on a simplified example and
derive the general scheme of the algorithm. In the Section III
we introduce a method for evaluation of actions based on
stochastic forward simulation. In the Section IV we introduce
a decision scheme for parametric actions and discuss different
decision strategies. Our experimental findings are discussed in
Section V. Finally we conclude our findings in Section VI.

II. DECISION MAKING IN ROBOT SOCCER – AN
INTRODUCTORY EXAMPLE

To illustrate the task of making a decision in RoboCup
consider a basic example as shown in Figure 1 (top left).
The shown situation contains only the robot, the ball and the
opponent goal. For simplicity, we assume the robot is able to
shoot the ball in any direction. The task is then to choose a
direction to shoot the ball to.

In a situation like the one shown in Figure 1 (top left) this
problem can be solved geometrically in a straight forward
manner. For simplicity we choose the direction towards the

Fig. 1. A basic example illustrating the decision problem in robot soccer and
a solution approach based on simulation.

center of the opponent goal. If we move the ball to the side
closer to the goal line as shown in the Figure 1 (top right), this
simple strategy will obviously not work as expected. There
is a significant chance for the ball to leave the field due to
imprecise execution of the kick or disturbances of the field
surface. The ball is also very likely to collide with the goal
post or goal side and not actually enter the goal.

To address these aspects we consider a model for the
uncertainty of the ball’s trajectory after the kick. Such model
can be trained on the robot. We call this model the action
model. The distribution of the possible ball paths might then
look as illustrated in Figure 1 (bottom left). With such a model
we could try to estimate the chances of the ball leaving the
field, colliding with the goal, and entering the goal. Based on
these estimations we could, for instance, choose a direction
minimizing the chance of leaving the field and maximizing
the chance of scoring the goal.

The major challenge for estimating these probabilities for
particular outcomes is the complexity of the environment,
which makes it difficult to directly calculate the corresponding
integrals. Instead, we approximate the probabilities of partic-
ular outcomes by sampling the action model; in particular,
we sample the possible trajectories the ball could take after
the kick Figure 1 (bottom right). For a particular trajectory
we can explicitly calculate whether the ball collides with the
goal, leaves the field or ends up in the goal. In case that the
likelihood of a ball entering the goal is very low, the different
paths can be compared based on the distance to the goal. Then
the best action could be chosen based on the mean distance
to the opponent goal.

This example considerations lead to the following general
scheme for a decision algorithm:

1) Simulate - the possible outcomes for each action;
2) Evaluate - each of the simulated situations;
3) Select - an action based on integrated evaluations of each

action in consideration (Gain vs Loss)



In the above example we considered a very limited scenario.
A real RoboCup game poses a much more complex situation,
due to incomplete and noisy estimation of overall state, as
well as the presence of other agents, both from own and
opponent teams. Coping with this complexity requires more
complex action models or a finer-grained simulation, or a more
elaborate decision process. However, the overall approach
remains true. In the following section we will see how this
scheme can be generalized and applied to more complex
situations.

III. EVALUATING ACTIONS WITH STOCHASTIC FORWARD
SIMULATION

With the example from Section II in mind, the robot can
make a decision based on the expected value of an action. In
this section we discuss how such value of an action can be
estimated in a straightforward manner with the help of forward
simulation. In the following subsections we briefly describe the
particularities for the implementation of the state estimation,
action models, simulation, and evaluation processes. Some
aspects of these processes have been presented in more detail
in our previous work [10].

A. State Estimation

In our case, the state of the situation consists of the robot’s
position on the field, the position of the ball relative to the
robot, the positions of the teammates, and the obstacles in
close proximity and the corresponding uncertainties. Each of
these factors is modeled by a different independent probabilis-
tic algorithm; specifically, a particle filter for self localization
and a multi-hypothesis extended Kalman filter for the ball.

Let S ⊂ Rm be the set of all possible states and st
the probability variable describing the estimated state of the
situation at the time t with it’s uncertainty expressed by the
probability distributionP (xt). Let A ⊂ Rn be a set of all
possible actions and Â = {ai|i = 1, .., k} the set of random
variables describing the set of actions available to the robot.
The effect of an action a ∈ Â is described by an action model
P (st+1|st, a), the probability distribution of the transition
from state st to state st+1 after the execution of the action
a.

B. Action Models

In order to simulate the result of an action, we need models
for the effect of the action on the state of the situation, for the
dynamics of particular objects and for interactions between the
objects. As mentioned before, we assume the robot being able
of following three kicks: short kick right, short kick left, and
a long kick forward. Before the execution of a kick the robot
may turn around the ball in order to improve the outcome of
the kick. So each action consists of two parts: turning around
the ball, and executing one of the kicks.

The effect of a kick can be described by the resulting
movement of the ball. In particular, by its initial direction and
the initial velocity after the kick. The resulting trajectory of
the ball is then simulated by a simple rolling friction model as

described in [10]. We assume that the action is over when the
ball comes to a halt. This can happen either due to friction on
the floor or due to a collision with the goal, another player, or
an obstacle. Thus, we describe the outcome of a kick through
the distribution of the expected stopping locations of the ball.

With this, an action can be described as a parametric tuple
a(ρ) := (ρ, v0, α) ∈ R+ × [−π, π) × [−π, π), with the
rotation around the ball ρ, and the kick described by the
initial velocity v0 and the direction α of the resulting ball
movement. We assume the direction of the ball motion α and
the initial velocity v0 of the kick behaving independently in
accordance with the normal distribution. For a particular kick
the parameter v0, α and the corresponding standard deviations
σv, σα are fixed. They are estimated empirically. The rotation
around the ball before the kick ρ is a free parameter and is
simulated without additional noise.

C. Simulation

The task of the simulation process is to predict the state
of the situation after the execution of a kick. In general, an
exhaustive physical simulation is a complicated and resource
consuming process. To reduce complexity, we make several
assumptions. We focus only on simulating aspects involved
in the action, i.e., the motion of the ball and its potential
collision with obstacles and goals. We furthermore assume
that all objects excluding the ball remain static. Though this
is obviously not true, the velocity of the ball is usually
much higher than that of the robots, which makes it a viable
assumption in this case. To model collisions with obstacles,
especially goals, we assume a fully nonelastic collision, where
the ball’s trajectory ends at the point of contact.

More generally, we use simulation to estimate the action
model P (st+1|st, a). The dependency between the states and
the action can be very complex in general, to approach this,
we assume there exists a causality function F : S ×A −→ S
with st+1 = F (st, a), mapping a particular state and an action
to the resulting state. The simulation process approximates the
function F . With this we can define a hypothesis for an action
a ∈ A as a set of N ∈ N samples drawn from the model
distribution of the action a and the state estimate st:

Ha := {F (ŝi, âi)|(ŝi, âi) ∼ P (st, a), i = 1 . . . N} ⊂ S (1)

Figure 2 illustrates the hypotheses (resulting positions of
the ball) for the three possible kicks without prior rotation
around the ball. Most of the samples for the right kick left
the field, while the samples for the left kick are completely
inside the field. The samples of the forward kick illustrate how
complicated the resulting distribution can be: a partition of the
samples is inside the goal, another large part is inside the field
and a few have left the field.

D. Evaluation

With the simulation process described in the previous sec-
tion, the likelihood P (s|st, a) of the occurrence of an event



Fig. 2. Simulation of three different kicks: sampled distributions of the
possible ball positions after a left (yellow) and right (red) sidekick, and the
forward kick (cyan).

s ⊂ S as a result of the action a in state st can be statistically
estimated from the hypothesis Ha as:

P (s|st, a) ∼
|Ha ∩ s|
|Ha|

. (2)

We define a set of target states Sgoal ⊂ S, consisting
of situations in which the ball is inside the opponent goal.
We also define a set of situations Sout ⊂ S containing
situations where the ball is inside the own goal or outside
of the field, and Sinfield ⊂ S consisting of all situations
where the ball is inside the field area. We can use this sets
to evaluate and compare simulated future states. The states
in Sgoal are desirable and those in Sout should be avoided.
For the comparison of the neutral states Sinfield we introduce
a scalar value function v : S −→ R+ assigning each state
s ∈ S a value v(s) ∈ R+. The function v is encoding the team
strategy. The value function introduced in [10] is a manually
created potential field optimizing two criteria: positions closer
to the opponent goal get a better potential and positions further
away from the own goal are also better.

To ensure meaningful values outside of the field area, we
assume that the value function assumes its maximal value
inside the opponent goal v|Sgoal

= vmax, and vanishes outside
of the field v|Sout

= 0.
With this we can define the utility of an action a ∈ A in

state st through

u(a, st) :=

∫
s∈S

v(s) · P (s|st, a)ds. (3)

The utility of an action can be estimated as

u(a, st) ∼
1

|Ha|
∑
ŝ∈Ha

v(ŝ). (4)

Applying the special values for Sgoal and Sout we get

u(a, st) = v0(a) · pinfield + vmax · pgoal (5)

with v0(a) = 1
|Ha∩Sinfield|

∑
ŝ∈Ha∩Sinfield

v(ŝ), pinfield :=

P (Sinfield|st, a), and pgoal := P (Sgoal|st, a). Thus, we only
need to evaluate the function v for the states inside the field.

In order to explicitly control the maximal likelihood of the
ball leaving the field, we introduce the threshold Tout > 0 and
define the trimmed utility function

û(st, a) :=

{
0, if σrisk(a) > Tout

u(a, st), otherwise
(6)

Note, that for each evaluation of the utility function û a full
stochastic simulation, as described above, has to be performed.

IV. DECISION ALGORITHM

With the example from Section II in mind, we consider
the situation where a robot has already approached the ball
and needs to choose the best kick action. Before the kick, the
robot may adjust its rotation around the ball to improve the
effectiveness of the kick.

In this section we discuss how the best action can be se-
lected. We assume that we have a finite number of parametriz-
able kick actions as described in Section III-B. The general
approach is to determine an optimal parametrization for each
of the actions in the first step, and then select one of the
optimal actions, which is promising the best outcome. Thus,
the main decision algorithm consists of two steps:

1) optimize the parameters of each action separately;
2) select the best action from the set of optimized actions;
The overall decision has to take into account the trade-

off between possible risks, e.g., ball leaving the field, and
possible gains, e.g., scoring a goal, weighted by the likelihood
of their occurrence. The estimation of those risks and gains
can be done based on the individual ratings of the particular
simulation results, i.e., samples.

In our scenario we assume that the robot can turn around the
ball in order to improve the outcome of a kick. Thus, before
selecting a kick we estimate the rotation around the ball which
would be necessary to for each kick to be optimal. One criteria
for the optimality is the value of the action. The other is the
risk of the ball being taken over by the opponent if the robot
spent too much time at the ball. Note that these risks arising
due to optimization of each action (turning around the ball)
is not encoded as part of the utility function û introduced in
Section III-D.

This leads to a classical saddle-point problem: maximizing
the chance of scoring a goal while minimizing the chance of
own goal. We can split this problem and optimize different
aspect in both steps of the decision scheme, which leads
to different strategies. For example, in the first step each
individual action might be optimized to have minimal rotation
time around the ball. Then in the second step we could select
the action with the higher chances to score a goal.

Note, that both steps of the above decision scheme are re-
lying internally on the basic simulate-evaluate-decide-scheme
introduced in Section II.

A. Strategies

To evaluate the presented decision scheme, we introduce
four different strategies.



Fig. 3. Visualization of the path the ball takes from on position to the goal
using different strategies. The red lines represents the fast strategy. The blue
path represents the optimal one strategy. The black path represents the optimal
all strategy. The optimal value strategy is represented by the yellow path.

The fast minimizes the rotation in both steps of the algo-
rithm. As the result, this strategy does not turn around the ball
except when all kick actions are considered as too risky or no
kick can improve the ball position. In this case the robot turns
towards the goal, until one action becomes acceptable.

The optimal value strategy maximizes the utility function
û in both steps of the algorithm. As the result an action is
chosen, which maximizes the likelihood to score a goal.

The optimal all strategy maximizes the utility û of each
action in the first step, and selects the one with the minimal
rotation around the ball, in the second step. Thus, this strategy
represents a trade off between the strategies fast and optimal
value.

The optimal one strategy assumes that only the forward kick
can be used. In this strategy the robot will always turn in the
direction of the gradient of the potential field. Many team in
SPL use a similar strategy. It was included to evaluate the
benefits of additional actions like sidekicks.

In Figure 3 one example of the kick sequence is shown for
each of the strategies.

V. EXPERIMENTAL RESULTS

A. Stability of Decisions Depending on Number of Simulations

A central aspect of the simulation based decision approach
is the evaluation of samples and not the full underlying
probability density functions as described in ??. To make this
algorithm usable in real time on the NAO robot platform,
only a small number of samples can be used. To test if using
more samples results in a significant qualitative improvement,
multiple experiments were conducted using an abstract 2D
simulator. We discretized the field in 30cm steps and in
5◦ rotation steps. For each of these positions the decision was
calculated 100 times each with different number of samples.
The highest column in each resulting decision histogram
represents the corresponding most likely decision. In Figure 4
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Fig. 4. Log-Log plot of the variation in decision depending on the number of
simulations used to make a decision. The variation of the decisions depends
linearly on the number of simulations.

the number of robot poses in which the most likely decision
is chosen more than 80% of the time and more than 50% is
visualized. We can see that sing 20 samples or more guaranties
that only in 10 percent of all states the decision chosen have a
likelihood of 20% or less. In [10] 30 samples were used. This
analysis shows that using 30 samples to estimate the result of
a kick is appropriate as increasing the number of samples has
only a small effect on the uncertainty.

B. Strategy Evaluation

To evaluate the four different strategies described in Sec-
tion IV-A we performed multiple experiments in an abstract
2D simulator. All strategies lead to either a goal or to ball
out. We evaluated how the strategies perform on an empty
field regarding how much the robot had to move until scoring
a goal or shooting out. We assume the following simple robot
behavior. If the robot position is not the ball position the robot
turns towards the ball and then walks straight towards it. If
the kick action and strategy demand a different rotation at
the ball the robot turns accordingly. To simulate consecutive
action we make the assumption that the kick action models
accurately model the result of a kick action. So the ball
position after the kick is determined by drawing one sample
from the distribution of the selected kick action.

In Figure 3 the ball positions after a kick are visualized as
colored circles. Here we are interested in how much the robot
needs to turn around the ball. Ideally the robot should do it
as little as possible so opponent players can’t take control of
the ball before we execute a kick.

Figure 5 shows the evaluation of turning times and number
of kicks from 10.000 experiments with random start positions
on the field. The logarithmic scaled histogram in Figure 5 (top)
shows how often the robot had to turn around the ball by
a specific amount. The fast strategy turns the least, it never
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Fig. 5. The histogram was calculated for 10000 random start positions. Top:
How often, how much the robot needed to turn around the ball. Bottom:
Number of kicks until a goal was scored.

turns more than 90◦. The optimal one and optimal value
perform very similar and turn the most – up to 180◦. The
optimal all strategy is a compromise between less turning and
optimizing according to the value function. It turns more than
fast, but never more than 100◦. Note, that the histogram in
Figure 5 (top) does not contain turns by 0◦.

Figure 5 (bottom) visualizes the number of kicks until a goal
was scored or it was out for each strategy. All the optimal
strategies perform significantly better than the fast strategy.
This is not surprising since those strategies maximize the
likelihood of scoring the goal while the fast strategy was
designed to perform a kick immediately as long as the ball
position would improve. The optimal all strategy minimizes
both the number of kicks and the amount of turning around
the ball and thus should be preferred over the other strategies.

VI. CONCLUSIONS

We presented an action selection algorithm based on for-
ward simulations. We discussed the algorithm in general terms
and in its application in the scenario of the kick selection
problem in RoboCup. The existing algorithm presented in [10]
was extended by parametric actions. This analysis shows that
optimizing the kicks lead to less time spending turning around
the ball before a kick. This significantly reduces the risk of
getting the ball stolen by opponent players before the kick is
executed.

Furthermore the stability of decisions depending on the
number of predictions was analyzed. We found that using 30
samples to estimate the result of one kick is good trade-off
between computation time and accuracy.

Our current effort focuses in particular on stepwise ex-
tension to simulating the ball approach and more dynamic
evaluation. For instance, the potential field might reflect the
influence regions of the own teammates based on their posi-

tion, which would favor the kicks towards these regions and
enable emergent passing.

At the present state the implemented method is limited to the
selection of the kicks only. We believe that the true potential of
the forward simulation can only unfold if extended to all areas
of decision making like role decision, passing, positioning etc.

VIDEO

The following video illustrates the simulation
based decision algorithm in a real RoboCup game.
https://www2.informatik.hu-berlin.de/∼naoth/media/video/
hrs17-action-simulation.mp4
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